精英家教网 > 高中数学 > 题目详情

已知函数数学公式(ω>0,x∈R),且函数f(x)的最小正周期为π.
(1)求函数f(x)的解析式并求f(x)的最小值;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(B)=1,数学公式,且数学公式,求边长b.

解:(1)
得ω=2,
所以
所以
(2)由f(B)=1得,解得
又由,所以
由余弦定理知:
b2=a2+c2-2accosB=(a+c)2-2ac-2accosB
=
所以
分析:(1)利用两角和与差的余弦函数公式把f(x)化简合并后,前两项提取2,利用两角和的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,利用周期公式即可求出ω的值,代入即可确定出f(x)的解析式,根据正弦函数的值域进而求出f(x)的最小值;
(2)根据(1)中求出的f(x)的解析式,利用f(B)=1,即可求出B的度数,然后根据平面向量的数量积的运算法则化简已知的,把B的度数代入即可求出ac的值,根据余弦定理表示出b的平方,变形后把a+c及ac的值代入即可求出b的值.
点评:此题考查学生灵活运用两角和与差的正弦、余弦函数公式化简求值,掌握正弦函数的周期公式及值域,掌握平面向量的数量积的运算法则,灵活运用余弦定理化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2015届贵州省高二上学期期末考试理科数学试卷(解析版) 题型:填空题

已知函数),(0<x<4),的图像所有交点的横坐标之和为        .

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省揭阳三中高二(下)第一次段考数学试卷(理科)(解析版) 题型:解答题

已知函数(A>0,x∈R)的最小值为-2.
(1)求f(0);
(2)若函数f(x)的图象向左平移ϕ(ϕ>0)个单位长度,得到的曲线关于y轴对称,求ϕ的最小值.

查看答案和解析>>

科目:高中数学 来源:2013年广东省江门市高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数(A>0,x∈R)的最小值为-2.
(1)求f(0);
(2)若函数f(x)的图象向左平移ϕ(ϕ>0)个单位长度,得到的曲线关于y轴对称,求ϕ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设数学公式数学公式数学公式,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省肇庆四中高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设,求cos(α+β)的值.

查看答案和解析>>

同步练习册答案