精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:y2=8x的焦点为F,准线l与x轴的交点为M,过点M的直线l′与抛物线C的交点为P,Q,延长PF交抛物线C于点A,延长QF交抛物线C于点B,若 + =22,则直线l′的方程为

【答案】y=± (x+2)
【解析】解:抛物线C:y2=8x的焦点为F(2,0),设直线l′的方程x=my﹣2,

,整理得:y2﹣8my+16=0,设A(x1,y1),B(x2,y2),

则△=64m2﹣64>0,即m2>1,

∴y1+y2=8m,y1y2=16,

由抛物线的对称性可知: + = + =4m2﹣2=22,解得:m2=6,

故m=±

∴直线l′的方程为y=± (x+2),

所以答案是:y=± (x+2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.
(1)若a﹣3∈M,求实数a的取值范围;
(2)若[﹣1,1]M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣a|,a∈R
(Ⅰ)当a=5,解不等式f(x)≤3;
(Ⅱ)当a=1时,若x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1的一个焦点为F(2,0),且离心率为
(1)求椭圆方程;
(2)过点M(3,0)作直线与椭圆交于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两个焦点为 的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.

(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 + =1两焦点分别为F1、F2 , P是椭圆在第一象限弧上一点,并满足 =1,过P作两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)若直线AB的斜率为 ,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案