精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.
(1)由题意,代入计算得a2=2,a3=0,a4=2;
(2)a2=2-|a1|=2-a1,a3=2-|a2|=2-|2-a1|,
①当0<a1≤2时,a3=2-(2-a1)=a1
所以a12=(2-a1)2,得a1=1;
②当a1>2时,a3=2-(a1-2)=4-a1
所以a1(4-a1)=(2-a1)2,得a1=2-
2
(舍去)或a1=2+
2

综合①②得a1=1或a1=2+
2

(3)假设这样的等差数列存在,那么a2=2-|a1|,
a3=2-|2-|a1||,由2a2=a1+a3得2-a1+|2-|a1||=2|a1|(*),
以下分情况讨论:
①当a1>2时,由(*)得a1=0,与a1>2矛盾;
②当0<a1≤2时,由(*)得a1=1,从而an=1(n=1,2,…),
所以{an}是一个等差数列;
③当a1≤0时,则公差d=a2-a1=(a1+2)-a1=2>0,
因此存在m≥2使得am=a1+2(m-1)>2,
此时d=am+1-am=2-|am|-am<0,矛盾.
综合①②③可知,当且仅当a1=1时,a1,a2,…,an,…成等差数列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案