解:(Ⅰ)

分别作出两个正三棱锥的高PN、SM,连接AC交BD于O,连接OP、OS
∵△ADB与△BCD都是正三角形
∴四边形ABCD是菱形且∠BCD=60°,可得AC、DB互相垂直平分
∵△PBD中,PB=PD,O为BD中点
∴PO⊥BD,
同理,SO⊥BD,可得∠POS为二面角P-BD-S的平面角
∵ON=

,OM=

∴MN=

∵四边形ABCD是菱形且∠BCD=60°,
∴AC=

AB=6

?MN=

=2

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=

可得OP=OS=3
∵Rt△POB中,

∴PB=

在△PDB中,PB
2+PD
2=36=BD
2∴∠BPD=90°?BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=

,AN=

,
∴Rt△PAN中,高PN=

=

因此,正三棱锥P-ABD的体积

=

×

×

=

∴多面体SPABC的体积为V
1=2×

=

分析:(I)设AC、BD的交点为O,连接OP、OS.先用等腰三角形PBD与等腰三角形SBD证明出PO、SO都与BO垂直,∠POS为二面角P-BD-S的平面角,然后在菱形ABCD中求出P、S在底面的射影的距离等于
2

,从而PS=2

,在等腰三角形PSO中利用余弦定理结合二面角P-BD-S的余弦值为

计算出PO长,再在Rt三角形POB中求出PB长,得到△PBD、△PBA都是等腰直角三角形,从而结合线面垂直的判定得到PB⊥平面PAD;
(II)根据(I)的数据不难计算出正三棱锥P-ABD的高PN=

,从而得到正三棱锥P-ABD的体积为

,最终可得多面体SPABC的体积.
点评:本题是一道立体几何的综合题,着重考查了组合几何体的面积、体积问题直线与平面垂直的判定等知识点,属于中档题.