精英家教网 > 高中数学 > 题目详情
选修4一1:几何证明选讲
如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.
分析:(Ⅰ)要证DE是圆O的切线,连接AC,只需证出∠DAO=90°,由BC∥OD⇒OD⊥AC,则OD是AC的中垂线.通过△AOC,△BOC均为等腰三角形,即可证得∠DAO=90°.
(Ⅱ)由 BC∥OD⇒∠CBA=∠DOA,结合∠BCA=∠DAO,得出△ABC∽△AOD,利用比例线段求出EB.
解答:(Ⅰ)证:连接AC,AB是直径,则BC⊥AC
由BC∥OD⇒OD⊥AC

则OD是AC的中垂线⇒∠OCA=∠OAC,∠DCA=∠DAC,
⇒∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=∠DAO=90°.
⇒OC⊥DE,所以DE是圆O的切线.
(Ⅱ) BC∥OD⇒∠CBA=∠DOA,∠BCA=∠DAO⇒△ABC∽△AOD
BC
OA
=
AB
OD
⇒BC=
OA•AB
OD
=
1×2
5
=
2
5
5
BC
OD
=
2
5
BE
OE
=
2
5
BE
OB
=
2
3

⇒BE=
2
3
点评:本题考查圆的切线的证明,与圆有关的比例线段.准确掌握与圆有关的线、角的性质是解决此类问题的基础和关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•太原一模)选修4一1:几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.E为⊙O上一点,
AC
=
AE
,DE交AB于点F.
(I)证明:DF•EF=OF•FP;
(II)当AB=2BP时,证明:OF=BF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4一1:几何证明选讲
如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BCOD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2013年山西省太原市高考数学一模试卷(文科)(解析版) 题型:解答题

选修4一1:几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.E为⊙O上一点,,DE交AB于点F.
(I)证明:DF•EF=OF•FP;
(II)当AB=2BP时,证明:OF=BF.

查看答案和解析>>

科目:高中数学 来源:2013年辽宁省沈阳二中高考数学六模试卷(理科)(解析版) 题型:解答题

选修4一1:几何证明选讲
如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

同步练习册答案