精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
1
2
,且经过点A(2,3).
(1)求椭圆C的方程;
(2)设直线AO(O是坐标原点)与椭圆C相交于点B,试证明在椭圆C上存在不同于A、B的点P,使AP2=AB2+BP2(不需要求出点P的坐标).
分析:(1)由椭圆的性质,由离心率e=
1
2
可得b2=
3
4
a2
,又由点A(2,3)在椭圆上,可得
4
a2
+
9
b2
=1
,联立两式,可得a、b的值,即可得答案;
(2)首先将AP2=AB2+BP2成立转化为AB⊥BP,由椭圆的性质,易得B的坐标,进而可得直线BP的方程,与椭圆的方程联立转化为关于y的一元二次方程43y2+234y+315=0,,分析可得其△>0恒成立,即可得BP与椭圆有2个交点,可得证明.
解答:解:(1)依题意,e=
c
a
=
a2-b2
a
=
1
2

从而b2=
3
4
a2

点A(2,3)在椭圆上,所以
4
a2
+
9
b2
=1

解得a2=16,b2=12,
椭圆C的方程为
x2
16
+
y2
12
=1

(2)若AP2=AB2+BP2成立,则必有∠ABP=90°,即AB⊥BP,
由椭圆的对称性知,B(-2,-3),
由AB⊥BP,kAB=
3
2
kBP=-
2
3

所以直线BP的方程为y+3=-
2
3
(x+2)
,即2x+3y+13=0,
x2
16
+
y2
12
=1
2x+3y+13=0

得43y2+234y+315=0,
△=2342-4×43×315>0,
所以直线BP与椭圆C有两个不同的交点,
即在椭圆C上存在不同于A、B的点P,使AP2=AB2+BP2
点评:本题考查椭圆的性质及其性质的应用,本题中将“将AP2=AB2+BP2成立”转化为“AB⊥BP”是解题的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案