【题目】在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=
AB1,BN=
BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
![]()
A.1B.2C.3D.4
【答案】B
【解析】
由题意在四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,使AG
A1A,BF
B1B,CE
C1C,DH
D1D,得到平面GFEH,则点M,N在与平面A1B1C1D1平行的平面GFEH中.利用线面垂直的性质判断①正确;利用平行公理判断②错误;利用面面平行的性质判断③正确;利用面面平行以及线线垂直的性质判断④错误.
在正方体ABCD﹣A1B1C1D1的四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,
使AG
A1A,BF
B1B,CE
C1C,DH
D1D,连接GF,FE,EH,HG,
∵点M、N分别在AB1、BC1上,且AM
AB1,BN
BC1,
∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1,
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,
∵MN平面GFEH,∴AA1⊥MN,故①正确;
∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,故②错误;
∵平面GFEH∥平面A1B1C1D1,MN平面GFEH,∴MN∥平面A1B1C1D1,故③正确;
∵B1D1∥FH,FH平面GFEH,MN平面GFEH,且MN与FH不垂直,∴B1D1与MN不垂直,故④错误.
∴正确命题只有①③.
故选:B.
![]()
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为
和
.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.
(1)用
表示甲同学连续三次答题中答对的次数,求随机变量
的分布列和数学期望;
(2)设
为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对关于
的方程
有近似解,必修一课本里研究过‘二分法’.现在结合导函数,介绍另一种方法‘牛顿切线法’.对曲线
,估计零点的值在
附近,然后持续实施如下‘牛顿切线法’的步骤:
在
处作曲线的切线,交
轴于点
;
在
处作曲线的切线,交
轴于点
;
在
处作曲线的切线,交
轴于点
;
得到一个数列
,它的各项就是方程
的近似解,按照数列的顺序越来越精确.请回答下列问题:
(1)求
的值;
(2)设
,求
的解析式(用
表示
);
(3)求该方程的近似解的这两种方法,‘牛顿切线法’和‘二分法’,哪一种更快?请给出你的判断和依据.(参照值:关于
的方程
有解
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】狄利克雷是19世纪德国著名的数学家,他定义了一个“奇怪的函数”
,下列关于狄利克雷函数的叙述正确的有:______.
①
的定义域为
,值域是
②
具有奇偶性,且是偶函数
③
是周期函数,但它没有最小正周期 ④对任意的
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=
AB1,BN=
BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
的焦点,
是抛物线上一点,且
.
(1)求抛物线
的标准方程;
(2)过点
的动直线
交抛物线于
两点,抛物线上是否存在一个定点
,使得以弦
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,底面ABC为正三角形,
底面ABC,
,点
在线段
上,平面
平面
.
![]()
(1)请指出点
的位置,并给出证明;
(2)若
,求
与平面ABE夹角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com