精英家教网 > 高中数学 > 题目详情
设函数f(x)=axn(1-x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1。
(1)求a,b的值;
(2)求函数f(x)的最大值;
(3)证明:f(x)<
解:(1)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0
因为f′(x)=anxn-1-a(n+1)xn,所以f′(1)=-a.
又因为切线x+y=1的斜率为-1,
所以-a=-1,即a=1,
故a=1,b=0 。
(2)由(1)知,f(x)=xn(1-x),则有f′(x)=(n+1)xn-1-x),
令f′(x)=0,解得x=在(0,)上,导数为正,
故函数f(x)是增函数;在(,+∞)上导数为负,故函数f(x)是减函数;
故函数f(x)在(0,+∞)上的最大值为f()=(n(1-)=
(3)令φ(t)=lnt-1+,则φ′(t)=-=(t>0)
在(0,1)上,φ′(t)<0,故φ(t)单调减;
在(1,+∞),φ′(t)>0,故φ(t)单调增;
故φ(t)在(0,∞)上的最小值为φ(1)=0,
所以φ(t)>0(t>1)
则lnt>1-,(t>1),
令t=1+,得ln(1+)>
即ln(1+)n+1>lne
所以(1+)n+1>e,

由(2)知,f(x)≤
故所证不等式成立。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案