【题目】已知函数.
(1)当时,求函数的图像在出的切线方程;
(2)判断函数的单调性;
(3)证明:.
【答案】(1);(2)见解析;(3)见解析
【解析】
(I)当a=2时,先求出的值,即切线的斜率,然后写出点斜式方程,再化成一般式即可.
(II)先求导,可得,然后再对和a<0两种情况进行讨论研究其单调性.
(III) 由(Ⅱ)可知,当时,在上单调递增.
∴ 当时,,即
然后解本题的关键是令(),则,
又因为,即,从而问题得证
(Ⅰ)当时,,
∴,1分∴,所以所求的切线的斜率为3. 2分
又∵,所以切点为.3分故所求的切线方程为:.4分
(Ⅱ)∵ ,∴.①当时,∵,∴;②当时,由,得;由,得;综上,当时,函数在单调递增;
当时,函数在单调递减,在上单调递增.···· 8分
(Ⅲ)方法一:由(Ⅱ)可知,当时,在上单调递增.∴ 当时,,即.···························· 10分
令(),则.··············· 11分
另一方面,∵,即,∴.∴().
方法二:构造函数,············· 9分
∴,··················· 10分
∴当时,;∴函数在单调递增.∴函数,即∴,,即2分
令(),则有
科目:高中数学 来源: 题型:
【题目】如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点,并修建两段直线型道路.规划要求:线段上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).
(1)若道路与桥垂直,求道路的长;
(2)在规划要求下,和中能否有一个点选在处?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P—ABCD中,PA⊥平面ABCD,∠DAB=∠ADC=90°,DC=AB,F,M分别是线段PC,PB的中点.
(1)在线段AB上找出一点N,使得平面CMN∥平面PAD,并给出证明过程;
(2)若PA=AB,DC=AD,求二面角C—AF—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】山东省于2015年设立了水下考古研究中心,以此推动全省的水下考古、水下文化遗产保护等工作;水下考古研究中心工作站,分别设在位于刘公岛的中国甲午战争博物院和威海市博物馆。为对刘公岛周边海域水底情况进行详细了解,然后再选择合适的时机下水探摸、打捞,省水下考古中心在一次水下考古活动中,某一潜水员需潜水米到水底进行考古作业,其用氧量包含以下三个方面:
①下潜平均速度为米/分钟,每分钟的用氧量为升;
②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.4升;
③返回水面时,平均速度为米/分钟,每分钟用氧量为0.32升.
潜水员在此次考古活动中的总用氧量为升.
(Ⅰ)如果水底作业时间是分钟,将表示为的函数;
(Ⅱ)若,水底作业时间为20分钟,求总用氧量的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在点(1,g(1))处的切线方程为2y-1=0.
(1)求g(x)的解析式;
(2)设函数G(x)=若方程G(x)=a2有且仅有四个解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的平面直角坐标系中,已知点A(1,0)和点B(﹣1,0),,且∠AOC=x,其中O为坐标原点.
(1)若x=,设点D为线段OA上的动点,求的最小值;
(2)若R,求的最大值及对应的x值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,梯形中,,,,,分别是,的中点,将四边形沿直线进行翻折,给出下列四个结论:①;②③平面平面;④平面平面,则上述结论可能正确的是( ).
A.①③B.②③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有( )
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com