【题目】如图,在平行六面体
,
,
,
为矩形.
![]()
(1)证明:平面
平面
;
(2)求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知函数
,(x>0).
(1)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(3)若存在实数a,b(a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb](m≠0),求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体
中,E是棱
的中点,F是侧面
内的动点,且
与平面
的垂线垂直,如图所示,下列说法不正确的是( )
![]()
A.点F的轨迹是一条线段B.
与BE是异面直线
C.
与
不可能平行D.三棱锥
的体积为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面四边形
中,
,
,再将
沿着
翻折成三棱锥
的过程中,直线
与平面
所成角均小于直线
与平面
所成角,设二面角
,
的大小分别为
,则( )
![]()
A.
B.
C.存在
D.存在![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】方程x2+
x-1=0的解可视为函数y=x+
的图象与函数y=
的图象交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk(k≤4)所对应的点(xi ,
)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com