精英家教网 > 高中数学 > 题目详情
(2010•广东模拟)已知数列{an}的首项为a1=3,点(an,an+1)在直线3x-y=0(n∈N*)上.
(1)求数列{an}的通项公式;
(2)若f(x)=a1x+a2x2+…+anxn,求f'(1)的值,并化简.
分析:(1)通过点在直线上,求出an与an+1的关系,判断数列是等比数列,然后求数列{an}的通项公式;
(2)若f(x)=a1x+a2x2+…+anxn,求出函数的导数,然后直接求出f′(1)的值,利用错位相减法求出值即可.
解答:解:(1)由已知有3an-an+1=0
an+1
an
=3
,所以数列{an}为等比数列,…(4分)
an=a1•3n-1=3n(n∈N*),…(6分)
(2)f(x)=a1x+a2x2+…+anxn
则f′(x)=a1+2a2x+3a3x2+…+nanxn-1
则f′(1)=a1+2a2+3a3+…+nan=3+2•32+3•33+…+n•3n…①
3f′(1)=3•3+2•32•3+3•33•3+…+n•3n•3
即3f′(1)=32+2•33+3•34+…+(n-1)•3n+n•3n+1…②…(8分)
①-②得-2f′(1)=3+32+33+…+3n-n•3n+1
⇒-2f′(1)=
3(3n-1)
3-1
-n•3n+1⇒f′(1)=-
3(3n-1)
4
+
n
2
3n+1

⇒f′(1)=
(2n-1)3n+1
4
+
3
4
…(14分)
点评:本题是中档题,考查数列与函数的关系,通项公式的求法,错位相减法的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•广东模拟)函数f(x)=cos(-
x
2
)+sin(π-
x
2
).x∈R
(1)求f(x)的周期;
(2)求f(x)在[0,π)上的减区间;
(3)若f(a)=
2
10
5
,a∈(0,
π
2
),求tan(2a+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)设x、y、z是空间不同的直线或平面,对下列四种情形:
①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)函数y=e2x图象上的点到直线2x-4y-4=0距离的最小值是
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)如果(3x2-
2x3
)n
的展开式中含有非零常数项,则正整数n的最小值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)不等式1<|x+2|<5的解集是(  )

查看答案和解析>>

同步练习册答案