精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知函数
(1)若的单调区间;
(2)若函数存在极值,且所有极值之和大于,求a的取值范围。

(1)的递减区间是,无递增区间;(2).

解析试题分析:(1)函数的定义域为
恒成立,所以的递减区间是,无递增区间
(2)
因为存在极值,所以上有根即方程
上有根.
记方程的两根为由韦达定理,所以方程的根必为两不等正根。
 所以满足方程判别式大于零
故所求取值范围为
考点:本题主要考查应用导数研究函数的单调性及极值。
点评:典型题,本题属于导数应用中的基本问题,(2)通过研究函数的极值情况,确定得到含a的方程,利用方程有解,求得取值范围。涉及对数函数,要特别注意函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知定义域为的函数是奇函数.
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的单调增函数,满足
(1)求
(2)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数f (x)=-ax3x2+(a-1)x (x>0),(aÎR).
(Ⅰ)当0<a时,讨论f (x)的单调性;
(Ⅱ)若f (x)在区间(a, a+1)上不具有单调性,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数(其中,
(1)求函数的定义域;
(2)求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);(4分)
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(11分)已知函数f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)问a为何值时,函数的最小值是-4。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求证:
方程的根一个在内,一个在内,一个在内.(12分)

查看答案和解析>>

同步练习册答案