精英家教网 > 高中数学 > 题目详情

(11分)已知函数f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)问a为何值时,函数的最小值是-4。

(1)a="2" ;(2)当a=1或a=-1时函数的最小值是-4.

解析试题分析:(1)∵f(a+1)-f(a)=9
∴(a+1)2+2a(a+1)-3-(a2+2a-3)=9,
解得a=2       ………………5分
(2)f(x)=x2+2ax-3=(x+a)2-a2-3       ………………8分
∵f(x)的最小值是-4,
∴ - a2-3=-4  a=1或a=-1 
∴当a=1或a=-1时函数的最小值是-4.   ………………11分
考点:本题主要考查二次函数的图象和性质,待定系数法,配方法。
点评:中档题,求二次函数的解析式,常常利用待定系数法,研究其最值常常应用配方法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知实数,函数.
(I)讨论上的奇偶性;
(II)求函数的单调区间;
(III)求函数在闭区间上的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)若的单调区间;
(2)若函数存在极值,且所有极值之和大于,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若,求函数在点(0,)处的切线方程;
(2)是否存在实数,使得的极大值为3.若存在,求出值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
把边长为的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为.

(Ⅰ)写出函数的解析式,并求出函数的定义域;
(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 求a的值;
(2) 证明的奇偶性;
(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数是定义在上的奇函数,当
(Ⅰ)求的值;
(Ⅱ)求的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 若,求函数的极值;
(2) 设函数,求函数的单调区间;
(3) 若在区间)上存在一点,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(Ⅰ)讨论函数的单调区间;
(Ⅱ)若恒成立,求的取值范围。

查看答案和解析>>

同步练习册答案