(本题满分12分)
把边长为的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为.
(Ⅰ)写出函数的解析式,并求出函数的定义域;
(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积.
(Ⅰ),定义域为。(Ⅱ)容器高为时,容器的容积最大为.
解析试题分析:(Ⅰ)因为容器的高为x,则做成的正三棱柱形容器的底边长为 ----2分.
则 . ---------4分
函数的定义域为. --------- 5分
(Ⅱ)实际问题归结为求函数在区间上的最大值点.
先求的极值点.
在开区间内,-----------6分
令,即令,解得.
因为在区间内,可能是极值点. 当时,;
当时,. ------------8分
因此是极大值点,且在区间内,是唯一的极值点,
所以是的最大值点,并且最大值
即当正三棱柱形容器高为时,容器的容积最大为.----------12分
考点:函数模型的实际应用;利用导数研究函数的极值和最值。
点评:本题主要考查的知识点是函数模型的选择与应用,其中解答本题的关键是根据已知求出棱柱的底面面积和高,进而求出函数的解析式,建立数学模型.求解析式的时候,要记得求函数的定义域。
科目:高中数学 来源: 题型:解答题
已知函数 (为常数)是实数集R上的奇函数,函数是区间[-1,1]上的减函数
(I)求的值;
(II)求的取值范围;
(III)若在上恒成立,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知函数f (x)=-ax3+x2+(a-1)x- (x>0),(aÎR).
(Ⅰ)当0<a<时,讨论f (x)的单调性;
(Ⅱ)若f (x)在区间(a, a+1)上不具有单调性,求正实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为.
(1)写出的单调递减区间(不必证明);(4分)
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,且在处取得极值.
(1)求的值;
(2)若当时,恒成立,求的取值范围;
(3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)已知函数,.
(1)用定义证明:不论为何实数在上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com