(本小题满分15分)已知函数,.
(1)用定义证明:不论为何实数在上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.
(1)见解析;(2);(3).
解析试题分析:(1) 的定义域为R, 任取,------------1分
则=. -----------3分
,∴ .
∴,即.
所以不论为何实数总为增函数.————————5分
(2) 在上为奇函数,
∴, ------------7分
即.解得 . —————————————10分
(3)由(2)知,,
由(1) 知,为增函数,
∴在区间上的最小值为. ------------13分
∵,
∴在区间上的最小值为.———————————————15分
考点:本题考查用定义法证明函数的单调性;函数的奇偶性;函数的最值。
点评:(1)用的定义法证明函数单调性的步骤:一设二作差三变形四判断符号五得出结论。
(2)灵活应用奇函数的性质:若x=0在函数的定义域内,则f(0)=0。属于基础试题。
科目:高中数学 来源: 题型:解答题
(本题满分12分)
把边长为的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为.
(Ⅰ)写出函数的解析式,并求出函数的定义域;
(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)星期天,刘先生到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:
1163普通:上网资费2元/小时;
2163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;
3ADSLD:每月70元,时长不限(其他因素忽略不计).
请你用所学的函数知识对上网方式与费用问题作出研究:
(1)分别写出三种上网方式中所用资费与时间的函数解析式;
(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象;
(3)根据你的研究,请给刘先生一个合理化的建议.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com