精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知函数(其中常数
(1)判断函数的单调性,并加以证明;
(2)如果是奇函数,求实数的值。

(1);(2);(3)

解析试题分析:(1)先求解函数定义域,然后结合单调性的定义,作差变形定号,下结论得到。
(2)因为函数是奇函数则有f(-x)+f(x)=0,进而得到关于a的表达式得到求解。
解(1)
,即(3分)
(2)

,即(7分)
(3)不等式对于恒成立,
,(9分)
而函数在区间上是增函数
所以,在区间上的最小值是(10分)
,实数的取值范围是.(12分)
考点:本题主要考查了函数的奇偶性和单调性的运用。
点评:解决该试题的关键是能利用定义法来求解和证明函数单调性问题。作差变形定号来证明。奇偶性的判定要分为两步,一看定义域,二看解析式f(-x)与f(x)的关系。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,求使成立的的取值范围。(10分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数.
(1)用定义证明:不论为何实数上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知f (x)=
(1)求函数f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用单调性定义证明在[2,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知方程为实数)有两个不相等的实数根,分别求:
(Ⅰ)若方程的根为一正一负,则求实数的取值范围;
(Ⅱ)若方程的两根都在内,则求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的值;
(2)若的图像与直线相切于点,求的值;
(3)在(2)的条件下,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某炮兵阵地位于地面A处,两观察所分别位于地面点C和D处, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目标出现于地面点B处时,测得∠BCD=30°,∠BDC=15°(如图),求炮兵阵地到目标的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知是定义在上的偶函数,且当时,.
(1)求当时,的解析式;
(2)作出函数的图象,并指出其单调区间(不必证明).

查看答案和解析>>

同步练习册答案