(12分)已知函数,是的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.
(Ⅰ)函数的单调递增区间为,. (Ⅱ).
解析试题分析:(I)先求导函数,然后根据x=2是f(x)的一个极值点建立等式关系,求出b,然后解不等式f′(x)>0即可求出函数的单调增区间;
(II)先利用导数求出函数f(x)在区间[1,3]上的最小值,若当x∈[1,3]时,要使f(x)-a2>
恒成立,只需f(x) min>a2+,即可求出a的范围.
解:(Ⅰ). ∵是的一个极值点,
∴是方程的一个根,解得.
令,则,解得或.
∴函数的单调递增区间为,.
(Ⅱ)∵当时,时,
∴在(1,2)上单调递减,在(2,3)上单调递增.
∴是在区间[1,3]上的最小值,且 .
若当时,要使恒成立,只需,
即,解得 .
考点:本题主要考查了函数的极值,单调性和在闭区间上的最值,同时考查了恒成立问题,属于中档题
点评:解决该试题的关键是利用极值点处导数为零,那么得到参数b的值,然后求解二次不等式同时能将不等式的恒成立问题,转换为求解函数的最小值大于参数问题。即f(x) min>a2+体现了转换与化归思想的和运用。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知
(1)求的值;
(2)当(其中,且为常数)时,是否存在最小值,如果存在求出最小值;如
果不存在,请说明理由;
(3)当时,求满足不等式的的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题15分)已知函数.
(1)当时,求的单调递增区间;
(2)是否存在,使得对任意的,都有恒成立.若存在,求出的取值范围; 若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)星期天,刘先生到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:
1163普通:上网资费2元/小时;
2163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;
3ADSLD:每月70元,时长不限(其他因素忽略不计).
请你用所学的函数知识对上网方式与费用问题作出研究:
(1)分别写出三种上网方式中所用资费与时间的函数解析式;
(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象;
(3)根据你的研究,请给刘先生一个合理化的建议.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com