精英家教网 > 高中数学 > 题目详情

(本小题满分15分)已知函数.
(1)若函数的值域为,求a的值;
(2)若函数上是增函数,求实数的取值范围.

(1) a=-1或a=;(2)

解析试题分析:(1)∵函数的值域为[0,+∞),
∴Δ=16a2-4(2a+6)=0-----3分
⇒2a2-a-3=0⇒a=-1或a=.-----------------7分
(2)函数上是单调递增的,
要使上是增函数,只需

所以实数的取值范围为
考点:二次函数的值域;二次函数的单调性。
点评:我们研究二次函数的单调性和最值时一定要考虑它的开口方向。①最大(小)值:当a>0时,函数图象开口向上,y有最小值,,无最大值;当a<0时,函数图象开口向下,y有最大值,,无最小值。②当a>0时,函数在区间上是减函数,在上是增函数;当a<0时,函数在区间上是减函数,在上是增函数。 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数f (x)=-ax3x2+(a-1)x (x>0),(aÎR).
(Ⅰ)当0<a时,讨论f (x)的单调性;
(Ⅱ)若f (x)在区间(a, a+1)上不具有单调性,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证: 当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求使成立的的取值范围。(10分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分) 已知函数f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的单调递减区间;
(2)求f(x)图象上与原点最近的对称中心的坐标;
(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求证:
方程的根一个在内,一个在内,一个在内.(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)

(1)求时函数的解析式
(2)用定义证明函数在上是单调递增
(3)写出函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数.
(1)用定义证明:不论为何实数上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案