精英家教网 > 高中数学 > 题目详情

已知函数,求使成立的的取值范围。(10分)

时,,当时,,当时 ,

解析试题分析:由已知,即,     ……2分
两边都除以得,.
,不等式可化为
,即.                                       ……7分
时,,                                 ……8分
时,,                            ……9分
时 ,.                                         ……10分
考点:本小题主要考查对数不等式和指数不等式的求解、复合函数的单调性和二次函数的图象和性质的应用,考查学生的转化能力和分类讨论思想的应用.
点评:函数的性质及其应用历来是考查的重点,要把各种函数的性质联系起来,综合灵活应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
若函数为奇函数,当时,(如图).

(Ⅰ)求函数的表达式,并补齐函数的图象;
(Ⅱ)用定义证明:函数在区间上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
把边长为的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为.

(Ⅰ)写出函数的解析式,并求出函数的定义域;
(Ⅱ)求当x为多少时,容器的容积最大?并求出最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数是定义在上的奇函数,当
(Ⅰ)求的值;
(Ⅱ)求的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 若,求函数的极值;
(2) 设函数,求函数的单调区间;
(3) 若在区间)上存在一点,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数.
(1)若函数的值域为,求a的值;
(2)若函数上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分9分)已知函数的定义域为
(1)求
(2)当时,求函数的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数(其中常数
(1)判断函数的单调性,并加以证明;
(2)如果是奇函数,求实数的值。

查看答案和解析>>

同步练习册答案