(本题满分14分)
已知函数
(1)
(2)
(1),;(2)8<a<11。
解析试题分析:(1)由原题条件,可得到
.................3分
.........................6分
(2)
........................9分
函数在定义域上位增函数,即有3a-24<9,
.................................12分
解得a的取值范围为8<a<11...................14分
考点:有关抽象函数的问题;函数的单调性。
点评:本题主要考查抽象函数的赋值及单调性的灵活应用,要解决抽象函数的有关问题需要牢牢把握所给已知条件及关系式,对式子中的字母准确灵活的赋值,变形构造。
科目:高中数学 来源: 题型:解答题
已知函数,且在处取得极值.
(1)求的值;
(2)若当时,恒成立,求的取值范围;
(3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分) 已知函数f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的单调递减区间;
(2)求f(x)图象上与原点最近的对称中心的坐标;
(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知方程(为实数)有两个不相等的实数根,分别求:
(Ⅰ)若方程的根为一正一负,则求实数的取值范围;
(Ⅱ)若方程的两根都在内,则求实数的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com