精英家教网 > 高中数学 > 题目详情

(本题满分14分)
已知函数
(1)
(2)

(1);(2)8<a<11。

解析试题分析:(1)由原题条件,可得到
.................3分
.........................6分
(2)
........................9分
函数在定义域上位增函数,即有3a-24<9,
.................................12分
解得a的取值范围为8<a<11...................14分
考点:有关抽象函数的问题;函数的单调性。
点评:本题主要考查抽象函数的赋值及单调性的灵活应用,要解决抽象函数的有关问题需要牢牢把握所给已知条件及关系式,对式子中的字母准确灵活的赋值,变形构造。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,设函数的图象关于直线=π对称,其中为常数,且
(Ⅰ)求函数的最小正周期;
(Ⅱ)若的图象经过点,求函数在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且处取得极值.
(1)求的值;
(2)若当时,恒成立,求的取值范围;
(3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证: 当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)已知函数
(Ⅰ)若上的最小值是,试解不等式
(Ⅱ)若上单调递增,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求使成立的的取值范围。(10分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分) 已知函数f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的单调递减区间;
(2)求f(x)图象上与原点最近的对称中心的坐标;
(3)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)

(1)求时函数的解析式
(2)用定义证明函数在上是单调递增
(3)写出函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知方程为实数)有两个不相等的实数根,分别求:
(Ⅰ)若方程的根为一正一负,则求实数的取值范围;
(Ⅱ)若方程的两根都在内,则求实数的取值范围

查看答案和解析>>

同步练习册答案