精英家教网 > 高中数学 > 题目详情
19.对于任意实数m,直线mx-y+1-3m=0必经过的定点坐标是(  )
A.(3,1)B.(1,3)C.$(\frac{1}{m},-3m)$D.无法确定

分析 直线mx-y+1-3m=0化为:m(x-3)+(1-y)=0,令$\left\{\begin{array}{l}{x-3=0}\\{1-y=0}\end{array}\right.$,解出即可得出定点坐标.

解答 解:直线mx-y+1-3m=0化为:m(x-3)+(1-y)=0,
令$\left\{\begin{array}{l}{x-3=0}\\{1-y=0}\end{array}\right.$,解得x=3,y=1.
∴直线恒过定点(3,1).
故选A.

点评 本题考查了直线系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.直线2x+y-2=0在x轴上的截距为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是等差数列,a3=5,a7=13,数列{bn}前n项和为Sn,且满足Sn=2bn-1(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,AB=BC,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=a或2a时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线l1与l2的斜率分别是方程6x2+x-1=0的两根,则直线l1与l2的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|1≤x≤2},B={x|x≤a},若A⊆B,则a的取值范围是(  )
A.{a|a≥2}B.{a|a>2}C.{a|a≥1}D.{a|a≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0.
(1)求证:f(x)是奇函数;
(2)若f(1)=$\frac{1}{2}$,试求f(x)在区间[-2,6]上的最值;
(3)是否存在m,使f(2log2x)2-4)+f(4m-2(log2x))>0对于任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=\frac{{p{x^2}+8}}{3x+q}$是奇函数,且$\frac{5}{2}<f(2)<3,p∈Z$,
(1)求实数p,q的值;
(2)判断函数f(x)在(-∞,-2)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从2名女生和5名男生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.
(1)求“所选3人中女生人数ξ≤1”的概率;
(2)求ξ的分布列;
(3)求ξ的数学期望.

查看答案和解析>>

同步练习册答案