精英家教网 > 高中数学 > 题目详情

设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P,若△F1PF2为等腰直角三角形,则椭圆的离心率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:设椭圆的方程和点P的坐标,把点P的坐标代入椭圆的方程,求出点P的纵坐标的绝对值,Rt△PF1F2 中,利用边角关系,
建立a、c 之间的关系,从而求出椭圆的离心率.
解答:设椭圆的方程为 (a>b>0),设点P(c,h),则 =1,
h2=b2-=,∴|h|=,由题意得∠F1PF2=90°,∠PF1F2=45°,
Rt△PF1F2 中,tan45°=1=====
∴a2-c2=2ac,+2•-1=0,∴=-1,
故选 A.
点评:本题考查椭圆的简单性质,直角三角形中的边角关系的应用.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是(  )
A、
2
2
B、
2
-1
2
C、2-
2
D、
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P,若△F1PF2为等腰直角三角形,则椭圆的离心率是(  )
A、
2
-1
B、
2
+1
2
C、2
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的两个焦点分别为F1、F2,椭圆短轴的一端点为B,若△F1BF2为等腰直角三角形,则椭圆的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10.设椭圆的两个焦点分别为,过F2作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率为(  )

A             B              

C          D

查看答案和解析>>

同步练习册答案