分析 由题意可得B=$\frac{π}{3}$,A+C=$\frac{2π}{3}$.利用两角和差的余弦公式化简$cos(\frac{π}{3}-A)+cosC$ 为$\sqrt{3}$sinA,再根据A∈(0,$\frac{2π}{3}$),利用正弦函数的定义域和值域求得 $\sqrt{3}$sinA 的范围.
解答 解:由于△ABC的三内角A,B,C满足2B=A+C,则B=$\frac{π}{3}$,A+C=$\frac{2π}{3}$.
则$cos(\frac{π}{3}-A)+cosC$=cos($\frac{π}{3}$-A)-cos($\frac{π}{3}$+A)=cos$\frac{π}{3}$cosA+sin$\frac{π}{3}$sinA-[cos$\frac{π}{3}$cosA-sin$\frac{π}{3}$sinA]=2sin$\frac{π}{3}$sinA=$\sqrt{3}$sinA,
再根据A∈(0,$\frac{2π}{3}$),可得sinA∈(0,1],∴$\sqrt{3}$sinA∈(0,$\sqrt{3}$],
故答案为:(0,$\sqrt{3}$].
点评 本题主要考查两角和差的余弦公式,正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{5}}{5}$-1 | B. | 1 | C. | 2 | D. | $\frac{3\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com