精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax3+bx2+cx在x=1和x=-1处有极值,且f(1)=-1,求a,b,c的值,并求出相应的极值.
分析:先求导函数,再利用函数f(x)=ax3+bx2+cx在x=1和x=-1处有极值,且f(1)=-1,可得方程组,从而可求a,b,c的值,考虑函数的单调性,即可确定函数的极值.
解答:解:
f′(x)=3ax2+2bx+c…(2分)

∵f(x)在x=1和x=-1处有极值,且f(1)=-1,
f′(-1)=0
f′(1)=0
f(1)=-1
3a-2b+c=0
3a+2b+c=0
a+b+c=-1
a=
1
2
b=0
c=-
3
2
(6分)
f′(x)=
3
2
x2-
3
2
=
3
2
(x+1)(x-1)

∴函数在(-∞,-1),(1,+∞)上,f′(x)>0,函数为增函数;
函数在(-1,1)上,f′(x)<0,函数为减函数,
∴当x=-1时,f(x)有极大值f(-1)=1;
当x=1时,f(x)有极小值f(1)=-1.…(12分)
点评:本题以函数为载体,考查导数的运用,考查函数的极值与单调性,解题的关键是正确运用极值条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案