精英家教网 > 高中数学 > 题目详情
某水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量每年递增1万件,每件水晶产品的固定成本与科技成本的投入次数的关系是.若水晶产品的销售价格不变,第次投入后的年利润为万元.
( 1 )求的表达式;
( 2 )问从今年算起第几年利润最高?最高利润为多少万元?
(1)年利润为 
(2)从今年算起第8年利润最高,最高利润为520万元.

试题分析:(1)第次投入后,产量为10+万件,产品价格为100元件,固定成本为
件,科技成本投入为100万元,所以,年利润为
    5分
(2)∵(万元),当且仅当,即是等号成立.说明从今年算起第8年利润最高,最高利润为520万元.                              10分
点评:中档题,关于函数应用问题的考查,在高考题中往往是“一大两小”。构建函数模型的步骤“审清题意、设出变量、确定函数、求解答案、写出结语”。本题利用均值定理,确定函数的最值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数的最大值为1.
(1)求常数的值;(2)求使成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则的大致图象是(      )
    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,如果存在区间,同时满足下列条件:①内是单调的;②当定义域是时,的值域也是,则称是该函数的“梦想区间”.若函数存在“梦想区间”,则的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围.
(2)当时,比较与1的大小.
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在实数集上的函数,其导函数记为
(1)设函数,求的极大值与极小值;
(2)试求关于的方程在区间上的实数根的个数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

请阅读下列材料: 已知一系列函数有如下性质:
函数上是减函数,在上是增函数;
函数上是减函数,在上是增函数;
函数上是减函数,在上是增函数;
……
利用上述所提供的信息解决问题:
若函数的值域是,则实数的值是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数y=f(x)是增函数,且函数y=f(x-3)的图象关于点(3,0)成中心对称,若s,t满足f(s-2s) ≥-f(2t-t),则
A.s≥tB.s<tC.|s-1|≥|t-1|D.s+t≥0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ex+x.对于曲线y=f(x)上横坐标成等差数列的三个点A、B、C,给出以下判断:
①△ABC一定是钝角三角形;
②△ABC可能是直角三角形;
③△ABC可能是等腰三角形;
④△ABC不可能是等腰三角形.
其中,正确的判断是(  )
A.①③  B.①④  C.②③  D.②④

查看答案和解析>>

同步练习册答案