精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围.
(2)当时,比较与1的大小.
(3)求证:
(1)
(2)①当时,,即
②当时,,即
③当时,,即
(3)利用(2)的结论或数学归纳法证明

试题分析:(1)当时,,定义域是,     1分

,得.       2分
时,,当时,
函数上单调递增,在上单调递减.     4分
的极大值是,极小值是
时,;当时,
仅有一个零点时,
的取值范围是       5分
(2)当时,,定义域为


上是增函数.        7分

∴①当时,,即
②当时,,即
③当时,,即.     9分
(3)(法一)根据(2)的结论,当时,,即
,则有,  
.     12分
.      14分
(法二)①当时,
,即时命题成立.      10分
②假设时,命题成立,即
则当时,

根据(2)的结论,当时,,即
,则有
则有,即时命题也成立.   13分
因此,由①②知不等式成立.         14分
点评:导数是研究函数性质的有力工具,要灵活运用解决问题,利用数学归纳法证明不等式时要注意放缩不等式的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某海边旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(Ⅰ)求函数的解析式及其定义域;
(Ⅱ)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数是定义域为R上的奇函数.
(1)求的值,并证明当时,函数是R上的增函数;
(2)已知,函数,求的值域;
(3)若,试问是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数(  )
A.是奇函数,且在上是单调增函数
B.是奇函数,且在上是单调减函数
C.是偶函数,且在上是单调增函数
D.是偶函数,且在上是单调减函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

时,有不等式(  )
A.
B.当,当
C.
D.当,当

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求,的值;
(2)当时,若函数在区间[,2]上的最大值为28,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量每年递增1万件,每件水晶产品的固定成本与科技成本的投入次数的关系是.若水晶产品的销售价格不变,第次投入后的年利润为万元.
( 1 )求的表达式;
( 2 )问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)设为奇函数,为常数.
(1)求的值;
(2)判断在区间(1,+∞)内的单调性,并证明你的判断正确;
(3)若对于区间 [3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(x,y)在映射f下的象是(xy,x+y),则点(2,3)在f下的象是          

查看答案和解析>>

同步练习册答案