精英家教网 > 高中数学 > 题目详情
设函数是定义域为R上的奇函数.
(1)求的值,并证明当时,函数是R上的增函数;
(2)已知,函数,求的值域;
(3)若,试问是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.
(1)如下(2)(3)存在正整数=3或4

试题分析:解:(1)是定义域为R上的奇函数,,得
此时,,即是R上的奇函数.
,则
在R上为增函数.
(2),即(舍去),
 
,由(1)知在[1,2]上为增函数,∴

时,有最大值;当时,有最小值
的值域
(3)=
假设存在满足条件的正整数,则
①当时,
②当时,,则,令,则,易证上是增函数,∴
③当时,,则,令,则,易证上是减函数,∴
综上所述,,∵是正整数,∴=3或4.
∴存在正整数=3或4,使得恒成立.
点评:本题难度较大。函数的单调性对求最值、判断函数值大小关系和证明不等式都有较大帮助,而求函数的单调性有时可以结合导数来求。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程;
(Ⅱ)设函数,当存在最小值时,求其最小值的解析式;
(Ⅲ)对(Ⅱ)中的,证明:当时, .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(Ⅰ)求的极值;
(Ⅱ)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为奇函数,为常数,
(1)求的值;
(2)证明在区间上单调递增;
(3)若,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是偶函数,
(1)求的值;(2)当时,求的解集;
(3)若函数的图象总在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则的大致图象是(      )
    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)解方程:
(Ⅱ)设,求函数在区间上的最大值的表达式;
(Ⅲ)若,求 的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

时,幂函数为减函数,求实数的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围.
(2)当时,比较与1的大小.
(3)求证:

查看答案和解析>>

同步练习册答案