精英家教网 > 高中数学 > 题目详情
请阅读下列材料: 已知一系列函数有如下性质:
函数上是减函数,在上是增函数;
函数上是减函数,在上是增函数;
函数上是减函数,在上是增函数;
……
利用上述所提供的信息解决问题:
若函数的值域是,则实数的值是        
2

试题分析:根据题意,由于函数上是减函数,在上是增函数;
函数上是减函数,在上是增函数;
函数上是减函数,在上是增函数;
那么可知当函数时 ,则有在上是减函数,在递增,那么可知其最小值在x=时取得,即函数值为6,解得2=6,实数的值是2,故答案为2.
点评:主要是考查了函数的单调性的运用,体现了对钩函数的重要性,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某海边旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(Ⅰ)求函数的解析式及其定义域;
(Ⅱ)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数有四个不同的零点,则实数的取值范围是_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

时,有不等式(  )
A.
B.当,当
C.
D.当,当

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量每年递增1万件,每件水晶产品的固定成本与科技成本的投入次数的关系是.若水晶产品的销售价格不变,第次投入后的年利润为万元.
( 1 )求的表达式;
( 2 )问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)设为奇函数,为常数.
(1)求的值;
(2)判断在区间(1,+∞)内的单调性,并证明你的判断正确;
(3)若对于区间 [3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值 ;
(3)数列满足,求的整数部分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,当时,恒有
的解析式;
的解集为空集,求的范围。

查看答案和解析>>

同步练习册答案