15£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=1£¬$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÔòÏòÁ¿$\overrightarrow{a}$-2$\overrightarrow{b}$ÔÚÏòÁ¿-$\overrightarrow{a}$·½ÏòÉϵÄͶӰΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®-1

·ÖÎö ¸ù¾ÝÆ½ÃæÏòÁ¿Í¶Ó°µÄ¶¨Ò壬¼ÆËã¶ÔÓ¦µÄͶӰ¼´¿É£®

½â´ð ½â£º¡ß|$\overrightarrow{a}$|=1£¬$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬
¡à$\overrightarrow{a}$•$\overrightarrow{b}$=0£¬
¡àÏòÁ¿$\overrightarrow{a}$-2$\overrightarrow{b}$ÔÚÏòÁ¿-$\overrightarrow{a}$·½ÏòÉϵÄͶӰΪ
-$\frac{£¨\overrightarrow{a}-2\overrightarrow{b}£©•\overrightarrow{a}}{|\overrightarrow{a}|}$=-$\frac{{\overrightarrow{a}}^{2}-2\overrightarrow{b}•\overrightarrow{a}}{|\overrightarrow{a}|}$=-$\frac{{1}^{2}-0}{1}$=-1£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿Í¶Ó°µÄ¶¨ÒåÓë¼ÆËãÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª1µÄÕý·½ÐΣ¬PD¡ÍAB£¬PD¡ÍBC£¬ÇÒPD=1£¬EΪPCµÄÖе㣮
£¨1£©ÇóÖ¤£ºPA¡ÎÆ½ÃæBDE£»
£¨2£©ÇóÖ±ÏßPBÓëÆ½ÃæBDEËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ô²x2+y2=m2£¨m£¾0£©ÄÚÇÐÓÚÔ²x2+y2+6x-8y-11=0£¬Ôòm=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬µãF¡¢A¡¢B·Ö±ðΪEµÄ×󽹵㡢ÓÒ¶¥µã£¬É϶¥µã£¬|AF|=$\sqrt{2}$+1£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©¹ýÔ­µãO×öбÂÊΪk£¨k£¾0£©µÄÖ±Ïߣ¬½»EÓÚC£¬DÁ½µã£¬ÇóËıßÐÎACBDÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=|2x+1|+|2x-3|£®
£¨¢ñ£©½â·½³Ìf£¨x£©-4=0£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Üa½â¼¯Îª¿Õ¼¯£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Éèmin$\left\{{x£¬y}\right\}=\left\{{\begin{array}{l}{y£¬x¡Ýy}\\{x£¬x£¼y}\end{array}}$£¬Èô¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©£¬g£¨x£©Âú×ãf£¨x£©+g£¨x£©=$\frac{2x}{{{x^2}+1}}$£¬Ôòmin{f£¨x£©£¬g£¨x£©}µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{{\sqrt{2}}}{2}$C£®$\frac{1}{2}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÏÂÁÐÃüÌâÖР      
¢ÙÈôf¡ä£¨x0£©=0£¬Ôòº¯Êýy=f£¨x£©ÔÚx=x0È¡µÃ¼«Öµ£»
¢ÚÈôf¡ä£¨x0£©=-3£¬Ôò$\underset{lim}{h¡ú0}$$\frac{f£¨{x}_{0}+h£©-f£¨{x}_{0}-3h£©}{h}$=-12
¢ÛÈôz¡ÊC£¨CΪ¸´Êý¼¯£©£¬ÇÒ|z+2-2i|=1£¬Ôò|z-2-2i|µÄ×îСֵÊÇ3£»
¢ÜÈôº¯Êýf£¨x£©=-x2+ax-lnx¼ÈÓм«´óÖµÓÖÓм«Ð¡Öµ£¬Ôòa£¾2$\sqrt{2}$»òa£¼-2$\sqrt{2}$    
 ÕýÈ·µÄÃüÌâÓТڢۣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ö±Ïß$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ £¨tΪ²ÎÊý£©ÓëÔ²$\left\{\begin{array}{l}{x=4+2cos¦È}\\{y=2sin¦È}\end{array}\right.$ £¨¦ÈΪ²ÎÊý£©ÏàÇУ¬ÔòÖ±ÏßµÄÇãб½ÇΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$»ò$\frac{5¦Ð}{6}$B£®$\frac{¦Ð}{4}$»ò$\frac{5¦Ð}{6}$C£®$\frac{¦Ð}{3}$»ò$\frac{2¦Ð}{3}$D£®-$\frac{¦Ð}{6}$»ò-$\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼×¡¢ÒÒÁ½Î»Ñ§Éú²Î¼ÓÊýѧ¾ºÈüÅàѵ£®ÏÖ·Ö±ð´ÓËûÃÇÔÚÅàѵÆÚ¼ä²Î¼ÓµÄÈô¸É´ÎÔ¤Èü³É¼¨ÖÐËæ»ú³éÈ¡8´Î£¬¼Ç¼ÈçÏ£º
¼×¡¡82¡¡81¡¡79¡¡78¡¡95¡¡88¡¡93¡¡84
ÒÒ   92¡¡95¡¡80¡¡75¡¡83¡¡80¡¡90¡¡85
£¨1£©Óþ¥Ò¶Í¼±íʾÕâÁ½×éÊý¾Ý£»Èô½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬¶Ô¼×ѧÉúÔÚÅàѵºó²Î¼ÓµÄÒ»´ÎÊýѧ¾ºÈü³É¼¨½øÐÐÔ¤²â£¬Çó¼×µÄ³É¼¨¸ßÓÚ80·ÖµÄ¸ÅÂÊ£»
£¨2£©ÏÖÒª´ÓÖÐÑ¡ÅÉÒ»È˲μÓÊýѧ¾ºÈü£¬´Óͳ¼ÆÑ§µÄ½Ç¶È£¨ÔÚÆ½¾ùÊý¡¢·½²î»ò±ê×¼²îÖÐÑ¡Á½ÖУ©¿¼ÂÇ£¬ÄãÈÏΪѡÅÉÄÄλѧÉú²Î¼ÓºÏÊÊ£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸