精英家教网 > 高中数学 > 题目详情
选修4-1;几何证明选讲
如图,PA为⊙O的切线,PB为过圆心O的割线,PA=AB,以AB为直径的圆交PB于C,交PA的延长线于D.
(Ⅰ)求证:AC=AD;
(Ⅱ)若PA=4,求⊙O的直径.
精英家教网
(Ⅰ)如图,连OA,因AB为圆O′的直径,有BD⊥PD,
精英家教网

又PA为圆O的切线,A为切点,有OA⊥PD,
故OABD,∠1=∠3,
又OA=OB,可知∠1=∠2,所以∠2=∠3,
在圆O′中,




AC
=




AD
,于是AC=AD.   
(Ⅱ)因PA=AB,故∠P=∠2=∠3,在Rt△BDP中,
∠P+∠2+∠3=90°,所以∠P=∠2=30°,
故OE=OA=
1
2
OP.
设⊙O的直径为R,则PE=R,PB=3R,于是PA2=PE•PB=3R2=16
可得R=
4
3
3
,故⊙O的直径为
8
3
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案