精英家教网 > 高中数学 > 题目详情
如图,几何体中,为边长为的正方形,为直角梯形,

(1)求异面直线所成角的大小;
(2)求几何体的体积.
(1) ;(2)

试题分析:(1)求异面直线所成的角,一般根据定义,过异面直线中的一条上某一点作中一条直线的平行线,把异面直线所成的角化为相交直线所夹的锐角或直角,而这可能通过在三角形中求得,如果图形中有两两相互垂直且交于同一点的三条直线,那么我们可以建立空间直角坐标系,把异面直线所成的角转化为空间两向量的夹角,要注意异面直线所成的角的范围是,而向量的夹角范围是,解题时注意转化;(2)这个几何体我们要通过划分,把它变成几个可求体积的几何体,如三棱锥和四棱锥,这两个棱锥的体积都易求,故原几何体的体积也易求得.
试题解析:(1)解法一:在的延长线上延长至点使得,连接.
由题意得,平面
平面,∴,同理可证.


为平行四边形,
.
(或其补角)为异面直线
所成的角.                          3分
由平面几何知识及勾股定理可以得

中,由余弦定理得

∵ 异面直线的夹角范围为
∴ 异面直线所成的角为.                             7分
解法二:同解法一得所在直线相互垂直,故以为原点,所在直线
分别为轴建立如图所示的空间直角坐标系,                            2分

可得

.               4分
设向量夹角为,则

∵ 异面直线的夹角范围为
∴ 异面直线所成的角为.                 7分
(2)如图,连结,过的垂线,垂足为,则平面,且.   9分

      11分
.
∴ 几何体的体积为.  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面
 
(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥中,底面是矩形,平面的中点,是线段上的点.

(1)当的中点时,求证:平面
(2)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.

(1)设的中点,证明:平面;
(2)证明:在内存在一点,使平面,并求点,的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1

(Ⅰ)求四面体ABCD的体积;
(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下面四个命题,不正确的是:               
①若向量满足,且的夹角为,则上的投影等于
②若等比数列的前项和为,则也成等比数列;
③常数列既是等差数列,又是等比数列;
④若向量共线,则存在唯一实数,使得成立。
⑤在正项等比数列中,若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知, 则两点间距离的最小值是(    )
A.B.2C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,二面角A1-BD-C1的余弦值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案