精英家教网 > 高中数学 > 题目详情
9.在锐角三角形ABC中,BC=3,AB=4,则AC的取值范围是(  )
A.$({1,\sqrt{5}})$B.$({\sqrt{7},5})$C.$({\sqrt{5},\sqrt{13}})$D.$({\sqrt{5},5})$

分析 分类讨论,利用余弦定理结合cosB>0,cosC>0即可得解AC的取值范围.

解答 解:由题意可知:BC=3,AB=4,
由于A,B,C均为锐角,
当AC为最大边时,cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{{3}^{3}+{4}^{2}-A{C}^{2}}{2×3×4}$>0,可得:AC<5,
当AB为最大边时,cosC=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2AC•BC}$=$\frac{A{C}^{2}+{3}^{2}-{4}^{2}}{2×3AC}$>0,可得:AC>$\sqrt{7}$,
∴AC∈($\sqrt{7}$,5),
故选:B.

点评 本题主要考查了余弦定理,余弦函数的图象和性质在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如果(3x-$\frac{1}{\root{3}{{x}^{2}}}$)n的展开式中各项系数之和为128,则展开式中$\frac{1}{{x}^{3}}$的系数是(  )
A.21B.14C.-14D.-21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知菱形 ABCD 中,对角线 AC 与 BD 相交于一点 O,∠A=60°,将△BDC 沿着 BD 折起得△BDC',连结 AC'.
(Ⅰ)求证:平面 AOC'⊥平面 ABD;
(Ⅱ)若点 C'在平面 ABD 上的投影恰好是△ABD 的重心,求直线 CD 与底面 ADC'所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式:|2x-m|≤1的整数解有且仅有一个值为2.
(1)求整数m的值;
(2)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值;
(3)函数f(x)=|2x-a|+a,若不等式f(x)≤6的解集为{x|-2≤x≤3},且存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:x2=2py(p>0)的焦点为F,A为C上异于原点的任意一点,点A到x轴的距离等于|AF|-1.
(1)求抛物线C的方程;
(2)直线AF与C交于另一点B,抛物线C分别在点A,B处的切线交于点P,D为y轴正半轴上一点,直线AD与C交于另一点E,且有|FA|=|FD|,N是线段AE的靠近点A的四等分点.
(i)证明点P在△NAB的外接圆上;
(ii)△NAB的外接圆周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=(a2-a-1)xa(a是常数)为幂函数,且在第一象限单调递增.
(1)求f(x)的表达式;
(2)讨论函数g(x)=$\frac{f(x)+3x+1}{x}$在(-$\sqrt{2}$,+∞)上的单调性,并证之.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示给的程序运行结果为S=41,那么判断空白框中应填入的关于k的条件是(  )
A.k≥4B.k≥5C.k>6D.k>5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα-βsinβ>0,则必有(  )
A.α2<β2B.α2>β2C.α<βD.α>β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex+mcosx-x.
(1)求曲线y=f(x)在点A(0,f(0))处的切线的斜率;
(2)当m=0时,求函数的f(x)单调区间和极值.

查看答案和解析>>

同步练习册答案