精英家教网 > 高中数学 > 题目详情
观察式子:1+
1
22
3
2
,1+
1
22
+
1
32
+
1
42
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…,则可归纳出式子为(  )
A、1+
1
22
+
1
32
+…+
1
n2
1
2n-1
(n≥2)
B、1+
1
22
+
1
32
+…+
1
n2
1
2n+1
(n≥2)
C、1+
1
22
+
1
32
+…+
1
n2
2n-1
n
(n≥2)
D、1+
1
22
+
1
32
+…+
1
n2
2n
2n+1
(n≥2)
分析:根据题意,由每个不等式的不等号左边的最后一项的分母和右边的分母以及不等号左边的最后一项的分母的底和指数的乘积减1等于右边分母分析可得答案.
解答:解:根据题意,由每个不等式的不等号左边的最后一项的分母和右边的分母以及不等号左边的最后一项的分母的底和指数的乘积减1等于右边分母可知,C正确;
故选C.
点评:本题考查了归纳推理,培养学生分析问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…,则可归纳出式子为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列式子:1+
1
22
3
2
1+
1
22
+
1
23
5
3
1+
1
22
+
1
32
+
1
42
7
4
,…,则可以猜想:1+
1
22
+
1
32
+
1
42
+…+
1
20112
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…
,则可以猜想的结论为:当n∈N且n≥2时,恒有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)观察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根据上述规律,第n个不等式应该为
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

查看答案和解析>>

同步练习册答案