精英家教网 > 高中数学 > 题目详情
用数学归纳法证明不等式“
1
n+1
+
1
n+2
+…+
1
2n
13
24
(n>2)”时的过程中,由n=k到n=k+1时,不等式的左边(  )
A.增加了一项
1
2(k+1)
B.增加了两项
1
2k+1
+
1
2(k+1)
C.增加了两项
1
2k+1
+
1
2(k+1)
,又减少了一项
1
k+1
D.增加了一项
1
2(k+1)
,又减少了一项
1
k+1
n=k时,左边=
1
k+1
+
1
k+2
++
1
k+k

n=k时,左边=
1
(k+1)+1
+
1
(k+1)+2
++
1
(k+1)+(k+1)

=(
1
k+1
+
1
k+2
++
1
k+k
)-
1
k+1
+
1
2k+1
+
1
2k+2

故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用数学归纳法证明不等式f(2n)>
n
2
时,f(2k+1)比f(2k)多的项数是
2k
2k

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的过程中,由“k推导k+1”时,不等式的左边增加了(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少应取
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式2n>n2时,第一步需要验证n0=(  )时,不等式成立.

查看答案和解析>>

同步练习册答案