精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
求(I)b的值;
(II)函数f(x)在区间[-3,3]上的最大值.

解:(I)∵函数F(x)=f(x)-3x2是一个奇函数,
∴F(-x)=-F(x),化简计算得∴b=3;(4分)
(II)∵函数f(x)在x=1处取极大值,
∴f′(-1)=0(5分)f(x)=-2x3+3x2+cx,f′(x)=-6x2+6x+c(6分)
∴f(-1)=-6-6+c=0,c=12(8分)
∴f(x)=-2x3+3x2+12x,f′(x)=-6x2+6x+12=-6(x2-x-2)
令f′(x)=0,得x1=-1,x2=2,(9分)
列表
(11分)
∴当x=-3时,f(x)max=45.(13分)
分析:(I)由函数F(x)=f(x)-3x2是一个奇函数,得到F(-x)=-F(x)构建关于b的方程求解.
(II)由函数f(x)在x=1处取极大值,可得陇望蜀f′(-1)=0和f(-1)=-6-6+c=0,从而得到了f(x)=-2x3+3x2+12x,再导数求得最值.
点评:本题主要考查函数的奇偶性和导数法来求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案