精英家教网 > 高中数学 > 题目详情

设F为抛物线y2=4x的焦点,A、B、C为抛物线上不同的三点,点F是△ABC的重心,O为坐标原点,△OFA、△OFB、△OFC的面积分别为S1、S2、S3,则则S12+S22+S32=


  1. A.
    9
  2. B.
    6
  3. C.
    3
  4. D.
    2
C
分析:确定抛物线y2=4x的焦点F的坐标,求出S12+S22+S32,利用点F是△ABC的重心,即可求得结论.
解答:设A、B、C三点的坐标分别为(x1,y1),(x2,y2),(x3,y3),则
∵抛物线y2=4x的焦点F的坐标为(1,0)
∴S1=,S2=,S3=
∴S12+S22+S32=++)=x1+x2+x3
∵点F是△ABC的重心
∴x1+x2+x3=3
∴S12+S22+S32=3
故选C.
点评:本题考查抛物线的定义,考查三角形重心的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年全国卷Ⅱ理)设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则|FA|+|FB|+|FC|=

(A)9               (B)   6                   (C) 4            (D) 3

查看答案和解析>>

科目:高中数学 来源: 题型:

F为抛物线y2=4x的焦点,ABC为该抛物线上三点,若等于

A.9                       B.6                              C.4                              D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

12.设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则|FA|+|FB|+|FC|=

(A)9               (B)   6                   (C) 4            (D) 3

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若++=0,则||+||+||的值为                           (  )

A.3         B.4        C.5         D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中模拟理)设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若(    )

A.9              B.6                 C.4               D.3

查看答案和解析>>

同步练习册答案