精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中E为AB的中点.
(1)求直线A1C1与平面A1B1CD所成角大小;
(2)试确定直线BC1与平面EB1D的位置关系,并证明你的结论;
(3)证明:平面EB1D⊥平面B1CD.
(1)在正方体ABCD-A1B1C1D1
A1B1⊥平面BC1
∴A1B1⊥BC1
又∵B1C⊥BC1
∴BC1⊥平面A1C
设B1C∩BC1=H,
则∠C1A1H是直线A1C1与平面A1B1CD所成角
又∵A1C1=
2
a,C1H=
2
2
a

∴sin∠C1A1H=
1
2

∴∠C1A1H=30°
(2)直线BC1平面EB1D,理由如下:
取DB1的中点O,则OHDCAB,OH=EB
∴四边形OHBE是平行四边形
∴BHEO
∴EO平面EB1D,
∴BC1平面EB1D
证明:(3)∵BC1⊥平面A1C,BHEO
∴EO⊥平面B1CD
∵EO?平面EB1D
平面EB1D⊥平面B1CD
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在三棱锥A-BCD中,AD=BC=2a,E、F分别是AB、CD的中点,EF=
3
a,求AD与BC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB
,E是SA的中点.
(1)求证:平面BED⊥平面SAB;
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,对角线AC1与底面ABCD所成角的正切值等于(  )
A.1B.
2
C.
2
2
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BCAD,且AB=AD=2BC,E,F分别是PB、PD的中点.
(1)证明:EF平面ABCD;
(2)若PA=AB,求PC与平面PAD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则AD与平面ABC所成之角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB的中点,N为SC的中点.
(1)求证:MN平面SAD;
(2)求证:平面SMC⊥平面SCD;
(3)记
CD
AD
,求实数λ的值,使得直线SM与平面SCD所成的角为30°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四棱锥P-ABCD中,侧棱PA与底面ABCD所成的角的正切值为
6
2

(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案