精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的前n项和为Sn,2Sn=3an-3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若等差数列{bn}的前n项和为Tn,且满足b1=a1,b7=b1•b2,求Tn

分析 (I)利用递推关系、等比数列的通项公式即可得出.
(II)利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}2{S_{n+1}}=3{a_{n+1}}-3\\ 2{S_n}=3{a_n}-3\end{array}\right.$,得an+1=3an,且a1=3,
则数列{an}为以3为首项公比为3的等比数列,
故${a_n}={3^n}$
(Ⅱ)设等差数列{bn}的公差为d,则由b1=a1=3,b7=b1•b2
得3+6d=3(3+d),
解得d=2,又b1=a1=3,
∴bn=2n+1,
∴${T_n}=\frac{(3+2n+1)n}{2}={n^2}+2n$.

点评 本题考查了递推关系、等比数列与等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3sin$\frac{x}{2}cos\frac{x}{2}+4co{s}^{2}\frac{x}{2}$(x∈R)的最大值等于(  )
A.5B.$\frac{9}{2}$C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin2x+2sin2x.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)将函数f(x)的图象向左平移$\frac{π}{12}$个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数y=sin(${\frac{1}{2}$x-$\frac{π}{3}}$)的图象向右平移$\frac{π}{2}$个单位,再将所得的图象所有点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变),则所得图象对应的函数的一个单调递增区间为(  )
A.[-$\frac{π}{12}$,$\frac{13π}{12}}$]B.[${\frac{13π}{12}$,$\frac{25π}{12}}$]C.[${\frac{π}{12}$,$\frac{13π}{12}}$]D.[${\frac{7π}{12}$,$\frac{19π}{12}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin$\frac{x}{3}$cos$\frac{x}{3}$+$\sqrt{3}$cos2$\frac{x}{3}$.
(Ⅰ)求函数f(x)图象对称中心的坐标;
(Ⅱ)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为B,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{x+2}{|x|+2}$,x∈R,则f(x2-2x)<f(3x-4)的解集是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{1}{3}$x3+ax2+b2x+1,若a是从1,2,3三个数中任取一个数,b是从0,1,2三个数中任取的一个数,则该函数存在递减区域的概率为(  )
A.$\frac{7}{9}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,点D,E分别为BC,CC1的中点.
(1)求证:B1D⊥平面ABE;
(2)若点P是线段B1D上一点且满足$\frac{{{B_1}P}}{PD}$=$\frac{1}{2}$,求证:A1P∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线y2=2px(p>0),过其焦点且斜率为2的直线交抛物线于A、B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为x=-2.

查看答案和解析>>

同步练习册答案