分析 先令t=ax,转化为二次函数,再结合a>1或0<a<1确定出t的范围,结合单调性确定何时取最大值列出方程即可.
解答 解:令t=ax>0
则原函数化为y=t2+2t-1=(t+1)2-2
结合二次函数的图象与性质可知该函数在(0,+∞)上是单调增函数
结合x∈[-1,1],
则当a>1时,t=ax∈[$\frac{1}{a}$,a],所以ymax=a2+2a-1=14,解得a=3或-5(舍),所以此时a=3符合题意;
当0<a<1时,t=ax∈[a,$\frac{1}{a}$],所以ymax=$\frac{1}{{a}^{2}}$+$\frac{2}{a}$-1=14,解得$\frac{1}{a}$=3或-5(舍),故a=$\frac{1}{3}$符合题意;
综上,所求实数a的值为3或$\frac{1}{3}$
点评 本题考查了利用指数函数与二次函数的单调性求最值,利用换元法将问题转化为二次函数的问题是关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17}{10}$ | B. | $\frac{4}{5}$ | C. | -$\frac{13}{15}$ | D. | -$\frac{14}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,-2,3) | B. | (1,-2,-3) | C. | (-1,2,-3) | D. | (1,2,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,1} | B. | {x=2,y=1} | C. | {(2,1)} | D. | (2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c>a>b | B. | a>b>c | C. | b>a>c | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 27 | B. | 81 | C. | 243 | D. | 729 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com