精英家教网 > 高中数学 > 题目详情
17.设等比数列{an}的前n项和为Sn=4(a1+a3+…+a2n-1),a1a2a3=27,则a6=(  )
A.27B.81C.243D.729

分析 利用等比数列的性质可得a2=3,当n=1时有,S2=a1+a2=4a1,得a1=1,q=3,由此能求出a6

解答 解:∵等比数列{an}中,a1a2a3=27,
∴利用等比数列的性质可得,a1a2a3=a23=27,即a2=3,
∵S2n=4(a1+a3+…+a2n-1),
∴n=1时有,S2=a1+a2=4a1,解得a1=1,q=3
∴a6=1×35=243.
故选:C.

点评 本题考查等比数列的第6项的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.是否存在实数a,使得函数f(x)=a2x+2ax-1(a>0且a≠1)在区间[-1,1]上的最大值为14?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={x|x2-4x+3<0},N={x|2x≤8},则M∩N=(  )
A.(1,3]B.(0,3]C.(-∞,3]D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
x1245
y1m5.58
若由资料可知y对x呈线性相关关系,y与x的线性回归方程$\stackrel{∧}{y}$=bx+a必过的点是(3,4),则m值为(  )
A.1.8B.5C.2D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设D为△ABC所在平面内的一点,且满足$\overrightarrow{BC}=2\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$B.$\overrightarrow{AD}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$C.$\overrightarrow{AD}=-\frac{3}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$D.$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,直角梯形ABCD与等腰直角三角形ABE所在面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB,
(1)在AE上是否存在一点F,使得直线DF∥面BCE,若存在求请给出点F的位置;
(2)点G是三角形ABE的重心,$CD=\sqrt{2}$,试求三棱锥E-ADG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个多面体的直观图及三视图如图1,2所示,其中 M,N 分别是 AF、BC 的中点.
(1)求证:MN∥平面 CDEF;
(2)求多面体的体积及表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$sin({π-α})-cos({π+α})=\frac{{\sqrt{2}}}{3}({\frac{π}{2}<α<π})$,求下列各式的值:
(1)sinαcosα;
(2)sinα-cosα;
(3)${sin^3}({\frac{π}{2}-α})-{cos^3}({\frac{π}{2}+α})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(2x+$\frac{π}{6}$)(x∈R),为了得到函数g(x)=cos2x的图象,只需将y=f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{12}$个单位

查看答案和解析>>

同步练习册答案