精英家教网 > 高中数学 > 题目详情
2.如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.
(1)求证:MN∥平面BCD;
(2)求证:平面BCD⊥平面ABC.

分析 (1)由中位线定理和线面平行的判定定理,即可得证;
(2)由线面垂直的性质和判定定理,可得CD⊥平面ABC,再由面面垂直的判定定理,即可得证.

解答 证明:(1)因为M,N分别是AC,AD的中点,
所以MN∥CD.
又MN?平面BCD且CD?平面BCD,
所以MN∥平面BCD;
(2)因为AB⊥平面BCD,CD?平面BCD,
所以AB⊥CD.
又CD⊥BC,AB∩BC=B,
所以CD⊥平面ABC.
又CD?平面BCD,
所以平面BCD⊥平面ABC.

点评 本题考查线面平行的判定和面面垂直的判定,考查空间直线和平面的位置关系,考查逻辑推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$x2+alnx.
(1)若a=1,求f(x)在点(1,f(1))处的切线方程;
(2)若a=-2,求函数f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,|F1F2|=4,点A在双曲线的右支上,线段AF1与双曲线左支相交于点B,△F2AB的内切圆与边BF2相切于点E.若|AF2|=2|BF1|,|BE|=2,则双曲线C的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为e,右顶点为A,点Q(3a,0),若C上存在一点P,使得AP⊥PQ,则(  )
A.$e∈({1,\sqrt{2}})$B.$e∈({\sqrt{2},\sqrt{3}})$C.$e∈({1,\sqrt{3}})$D.$e∈({\sqrt{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设z=$\frac{10i}{3-i}$,则z的共轭复数为(  )
A.-1+3iB.-1-3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.F1是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点P是双曲线右支上一点,若线段PF1与y轴的交点M恰为PF1的中点,且|OM|=a(O为坐标原点),则C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.复数 $\begin{array}{l}{i^2}(1-2i)\end{array}$的共轭复数是-1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,则满足f(x)=$\frac{1}{4}$的x的值是${2}^{\frac{1}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求4×6n+5n-1被20除后的余数.

查看答案和解析>>

同步练习册答案