精英家教网 > 高中数学 > 题目详情
13.已知F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,|F1F2|=4,点A在双曲线的右支上,线段AF1与双曲线左支相交于点B,△F2AB的内切圆与边BF2相切于点E.若|AF2|=2|BF1|,|BE|=2,则双曲线C的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 设|BF1|=m,则|AF2|=2m,由双曲线的定义可得|AF1|=2a+2m,|BF2|=m+2a,|EF2|=m+2a-2,再由内切圆的性质,求得a=1,结合离心率公式,可得所求.

解答 解:设|BF1|=m,则|AF2|=2m,
即有|AF1|=2a+2m,
|BF2|=m+2a,|EF2|=m+2a-2,
即有2a+2m=2m-(m+2a-2)+2+m,
解得a=1,
由c=2,可得e=$\frac{c}{a}$=2.
故选:D.

点评 本题考查双曲线的定义、方程和性质,考查内切圆的性质,考查离心率的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.f(x)=log${\;}_{\frac{1}{2}}$${\;}^{3{x}^{2}-ax+5}$在[-1,+∞)单调递减,则a的取值范围为(  )
A.(-∞,-6]B.(-8,-6]C.(-8,-6)D.[-6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有(  )
A.x3=x1+x2B.x1x2=x1x3+x2x3
C.x1+x2+x3=0D.x1x2+x2x3+x3x1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.动圆M经过点A(3,0)且与直线l:x=-3相切,则动圆圆心M的轨迹方程是(  )
A.y2=12xB.y2=6xC.y2=3xD.y2=24x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知动点A在圆x2+y2=1上移动,点B(3,0),则AB的中点的轨迹方程是(  )
A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.(x+$\frac{3}{2}$)2+y2=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300],绘制成如图所示的频率分布直方图.
(1)求直方图中x的值;
(2)求续驶里程在[200,300]的车辆数;
(3)若从续驶里程在第二组与第五组的车辆中随机抽取2辆车,求两车的续驶里程差大于50公里概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,“sinA>sinB”是“a>b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.
(1)求证:MN∥平面BCD;
(2)求证:平面BCD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线xsinα+y+2=0的倾斜角的取值范围是(  )
A.[0,π)B.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π)C.[0,$\frac{π}{4}$]D.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,π)

查看答案和解析>>

同步练习册答案