精英家教网 > 高中数学 > 题目详情
3.f(x)=log${\;}_{\frac{1}{2}}$${\;}^{3{x}^{2}-ax+5}$在[-1,+∞)单调递减,则a的取值范围为(  )
A.(-∞,-6]B.(-8,-6]C.(-8,-6)D.[-6,+∞)

分析 设t=3x2-ax+5,利用复合函数单调性之间的关系进行转化即可

解答 解:设t=g(x)=3x2-ax+5,
则y=log${\;}_{\frac{1}{2}}$t为减函数,
若函数f(x)=log${\;}_{\frac{1}{2}}$${\;}^{3{x}^{2}-ax+5}$在[-1,+∞)上单调递减,
则等价为函数t=g(x)=3x2-ax+5在[-1,+∞)上单调递增,且g(-1)>0,
则满足$\left\{\begin{array}{l}\frac{a}{6}≤-1\\ 3+a+5>0\end{array}\right.$,
解得:a∈(-8,-6],
故选:B

点评 本题主要考查函数单调性的应用,利用换元法,结合复合函数单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.阅读下面的程序:
INPUT  N
I=1
S=1
WHILE 1<=N
S=S*I
I=I+1
WEND
PRINT S
END
上面的程序在执行时如果输入5,那么输出的结果为120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.奥运会的圣火采集器是一个凹面镜,这个凹面镜与其轴截面的交线是一条抛物线,如图1所示,太阳光经凹面镜反射会聚于点火点,把火炬放在点火点处,即可被点燃.已知凹面镜的镜口直径是a,镜深是b.求点火点到凹面镜的顶点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F1,F2分别为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦分别为F1,F2,右顶点为A,上顶点为B,P为椭圆上在第一象限内一点,S${\;}_{△P{F}_{1}{F}_{2}}$,S${\;}_{△PA{F}_{2}}$,S${\;}_{△PB{F}_{1}}$分别为△PF1F2,△PAF2,△PBF1的面积,若S${\;}_{△P{F}_{1}{F}_{2}}$=S${\;}_{△PA{F}_{2}}$=S${\;}_{△PB{F}_{1}}$,则直线PF1的斜率为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=log3(-x2+2x+3)的定义域为(-1,3),值域为(-∞,log34],单调增区间为(-1,1],单调减区间为[1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.偶函数的定义域为R,x∈[0,+∞)时,f(x)=3x+2x2+x.
(1)判断f(x)的单调性(不用证明);
(2)求f(x)在(-∞,0)上的解析式;
(3)解不等式f(a2-3a+7)-f(4a-2a2-5)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(n)=log(n+1)(n+2)(n∈N*),定义使f(1)•f(2)•f(3)…f(k)为整数的数k(k∈N*)叫做“企盼数”,则在区间[1,2015]上这样的“企盼数”共有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$x2+alnx.
(1)若a=1,求f(x)在点(1,f(1))处的切线方程;
(2)若a=-2,求函数f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,|F1F2|=4,点A在双曲线的右支上,线段AF1与双曲线左支相交于点B,△F2AB的内切圆与边BF2相切于点E.若|AF2|=2|BF1|,|BE|=2,则双曲线C的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案