精英家教网 > 高中数学 > 题目详情
7.3名学生报名参加4项比赛,每人限报1项,则不同的报名方法有(  )
A.24种B.48种C.64种D.81种

分析 根据题意,是一个分步计数的问题,若每人限报一科,则每人有4种报名方法,由分步计数原理可得

解答 解:3名学生报名参加4项比赛,每人限报1项,则每人有4种报名方法,
则3人共有4×4×4=64种方法,
故选:C

点评 本题考查排列、组合的运用以及分步计数原理的运用,注意认真分析条件的限制,选择对应的公式,进而求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知集合$A=\left\{{x|\left\{{\begin{array}{l}{x+1>0}\\{x-3<0}\end{array}}\right.}\right\}$,B={x|-1<x-1<3},C={x|x<m-1或x>m+1}(m∈R)
(1)求A∩B;
(2)若(A∩B)⊆C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.150°=(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos(-225°)+sin(-225°)等于(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.0D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数φ(x)=ex-1-ax,
( I)当a=1时,求函数φ(x)的最小值;
(Ⅱ)若函数φ(x)在(0,+∞)上有零点,求实数a的范围;
( III)证明不等式ex≥1+x+$\frac{1}{6}{x^3}({x∈R})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD
(Ⅰ)求证:AD∥平面PBC
(Ⅱ)求证:AC⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.终边在直线y=-x上角的集合可以表示为{α|α=-$\frac{π}{4}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$            (t为参数),以坐标原点O为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求曲线C和直线l的直角坐标系方程;
(2)设点P(2,0),直线l与曲线C交于A,B两点,求弦长|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2,a3,猜想an等于(  )
A.$\frac{2}{{{{(n+1)}^2}}}$B.$\frac{2}{n(n+1)}$C.$\frac{1}{{{2^n}-1}}$D.$\frac{1}{2n-1}$

查看答案和解析>>

同步练习册答案