精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax2-2ax+b,当x∈[0,3]时,|f(x)|≤1恒成立,则2a+b的最大值为1.

分析 通过讨论a的符号,得到f(x)的最小值和最大值,由恒成立思想可得a,b满足的条件,作出可行域,从而求出2a+b的最大值即可.

解答 解:f(x)=ax2-2ax+b=a(x-1)2+b-a,
则函数的对称轴为x=1,最值为b-a,
当a>0时,函数f(x)图象开口向上,
当x=1时,f(x)取最小值b-a,
当x=3时取最大值3a+b,
由|f(x)|≤1恒成立,即-1≤f(x)≤1在[0,3]恒成立,
可得-1≤b-a,且3a+b≤1,且a>0,
作出点(a,b)满足的不等式组的可行域,如上图.
则z=2a+b过点(0,1)时,取得最大值1;
当a<0时,函数f(x)图象开口向下,
当x=1时,f(x)取最大值b-a,
当x=3时取最小值3a+b,
由|f(x)|≤1恒成立,即-1≤f(x)≤1在[0,3]恒成立,
可得-1≤3a+b,且-a+b≤1,且a<0,
作出点(a,b)满足的不等式组的可行域,如下图.
则z=2a+b过点(0,1)时,取得最大值1.
故答案为:1.

点评 本题考查了二次函数的性质,考查分类讨论思想,注意运用线性规划求最值,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-(a+1)x+b.
(1)若f(x)<0的解集为(-1,3),求a,b的值;
(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;
(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若男运动员抽取了8人,则女运动员抽取的人数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域:
(1)f(x)=2sin(x+$\frac{π}{6}$),-$\frac{π}{2}$≤x≤$\frac{π}{2}$
(2)y=cos2x-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若cos($\frac{π}{6}$-θ)=$\frac{{\sqrt{3}}}{3}$,则cos($\frac{5π}{6}$+θ)-sin2(θ-$\frac{π}{6}$)=-$\frac{\sqrt{3}+2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.5个人排成一排,要求甲排在中间,乙不排在两端,记满足条件的所有不同排法的种数为m.
(1)求m的值;
(2)求$(\sqrt{x}-\frac{2}{x})^{\frac{3m}{4}}$的展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC的三个内角为A、B、C,若$\frac{{sinA+\sqrt{3}cosA}}{{cosA-\sqrt{3}sinA}}=tan\frac{7π}{12}$,则sin2B+2cosC的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在四棱锥P-ABCD中,已知DC∥AB,DC=2AB,E为棱PD的中点.
(1)求证:AE∥平面PBC;
(2)若PB⊥PC,PB⊥AB,求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:
月工资
(单位:百元)
[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
男员工数1810644
女员工数425411
(1)试由图估计该单位员工月平均工资;
(2)现用分层抽样的方法从月工资在[45,55)和[55,65)的两组所调查的男员工中随机选取5人,问各应抽取多少人?
(3)若从月工资在[25,35)和[45,55)两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.

查看答案和解析>>

同步练习册答案