精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)=
x+b
x2+a
的定义域为R,f(1)=
1
2

(1)求实数a,b的值;
(2)证明函数f(x)在区间(-1,1)上为增函数;
(3)若g(x)=3-x-f(x),证明函数g(x)在(-∞,+∞)上有零点.
分析:(1))因为函数f(x)是R上的奇函数,所以f(0)=0,可得b的值,再利用f(1)=
1
2
,进而可求出a的值.
(2)由(1)可知:f(x)=
x
x2+1
.利用增函数的定义即可证明函数f(x)是增函数.
(3)由(1)可知g(x)=3-x-
x
x2+1
,由g(-1)g(1)<0,可判断出函数g(x)在(-1,1)上有一个零点,进而g(x)在(-∞,+∞)上有零点.
解答:解:(1)∵函数f(x)是R上的奇函数,∴f(0)=0,得
b
a
=0
,∴b=0;
又f(1)=
1
2
,∴
1
1+a
=
1
2
,∴a=1.
由上可知:a=1,b=0.
(2)由(1)可知:f(x)=
x
x2+1

设-1<x1<x2<1,则x2-x1>0,
于是△y=f(x2)-f(x1)=
x2
x22+1
-
x1
x
2
1
+1
=
(x2-x1)(1-x1x2)
(
x
2
2
+1)(
x
2
1
+1)

∵-1<x1<x2<1,∴x1x2<1,∴1-x1x2>0.
又x2-x1>0,
x
2
1
+1>0
x
2
2
+1>0

∴△y>0,
∴函数f(x)在(-1,1)上为增函数.
(3)∵g(x)=3-x-
x
x2+1
,∴g(-1)g(1)=(3+
1
2
)×(
1
3
-
1
2
)<0

∴g(x)在(-1,1)上有零点,
故函数g(x)在(-∞,+∞)上有零点.
点评:本题综合考查了函数的奇偶性、单调性及函数的零点,充分理解以上有关知识及方法是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)为R上的减函数,则关于a的不等式f(a2)+f(2a)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=lg
1-x1+x
,判断f(x)的奇偶性
(2)已知奇函数f(x)的定义域为R,x∈(-∞,0)时,f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③要得到函数y=sin(2x+
π
3
)
的图象,只要将y=sin2x的图象向左平移
π
3
单位;
④已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1}.
其中正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)是以2为周期的周期函数,数列{an}是首项为1,公差为1的等差数列,则f(a1)+f(a2)+…+f(a2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)满足f(x)=-f(x+2),当x∈[0,1]时,f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5个根,且记为xi(i=1,2,3,4,5),则x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步练习册答案