分析 (1)由条件进行数量积的运算便可得出$(\overrightarrow{a}+\overrightarrow{b})•(\overrightarrow{a}-2\overrightarrow{b})=9-\overrightarrow{a}•\overrightarrow{b}-4=4$,从而求出$\overrightarrow{a}•\overrightarrow{b}$的值;
(2)根据上面求得的$\overrightarrow{a}•\overrightarrow{b}$及条件可求出$|\overrightarrow{a}-\overrightarrow{b}{|}^{2}$的值,从而得出$|\overrightarrow{a}-\overrightarrow{b}|$的值.
解答 解:(1)根据条件,$(\overrightarrow{a}+\overrightarrow{b})•(\overrightarrow{a}-2\overrightarrow{b})={\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow{b}-2{\overrightarrow{b}}^{2}$=9$-\overrightarrow{a}•\overrightarrow{b}-4$=4;
∴$\overrightarrow{a}•\overrightarrow{b}=1$;
(2)$|\overrightarrow{a}-\overrightarrow{b}{|}^{2}={\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$
=9-2+2
=9;
∴$|\overrightarrow{a}-\overrightarrow{b}|=3$.
点评 考查向量数量积的运算,以及要求$|\overrightarrow{a}-\overrightarrow{b}|$而求$|\overrightarrow{a}-\overrightarrow{b}{|}^{2}$的方法.
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)>f(cosA) | B. | f(sinA)>f(cosB) | C. | f(sinC)<f(cosB) | D. | f(sinC)>f(cosB) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\sqrt{2}$ | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$-1 | D. | $\frac{\sqrt{2}}{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com