精英家教网 > 高中数学 > 题目详情
12.平面直角坐标系中,直线x-2y+3=0的一个方向向量是(  )
A.(1,2)B.(2,1)C.(1,-2)D.(-2,1)

分析 求出直线x-2y+3=0的斜率k,即可写出该直线的一个方向向量(1,k).

解答 解:直线x-2y+3=0的斜率为k=$\frac{1}{2}$,
所以该直线的一个方向向量是(1,$\frac{1}{2}$),
可化为(2,1).
故选:B.

点评 本题考查了平面直角坐标系中直线方向向量的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知函数f(x)的定义域为[-1,5],求函数f(x-5)的定义域;
(2)已知函数f(x-1)的定义域是[0,3],求函数f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足(an+1-1)(an-1)=$\frac{1}{2}$(an-an+1),a1=2,若bn=$\frac{1}{{a}_{n}-1}$.
(Ⅰ)证明:数列{bn}是等差数列;
(Ⅱ)令cn=$\sqrt{\frac{2}{{b}_{n}+1}}$,{cn}的前n项和为Tn,用数学归纳法证明Tn≥$\sqrt{n}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在6张奖券中有一、二、三等奖各1张,其余3张无奖,将6张奖券分配给3个人,每人2张,则不同的获奖情况有(  )
A.30种B.24种C.15种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-2$\overrightarrow{b}$)=4.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)求|$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.小赵,小钱,小孙,小李四位同学被问到谁去过长城时,
小赵说:我没去过;
小钱说:小李去过;
小孙说;小钱去过;
小李说:我没去过.
假定四人中只有一人说的是假话,由此可判断一定去过长城的是小钱.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下面三个类比推理:
①实数m、n,有(m+n)2=m2+2mn+n2;类比向量有($\overrightarrow a$+$\overrightarrow b$)2=${\overrightarrow a$2+2$\overrightarrow a$•$\overrightarrow{b}$+${\overrightarrow b$2
②实数m、n,若m2+n2=0,则m=n=0;类比复数z1、z2,若z12+z22=0,则z1=z2=0
③向量$\overrightarrow a$,有|$\overrightarrow a$|2=${\overrightarrow a$2;类比复数z,有|z|2=z2
类比所得到的命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知偶函数f(x)在区间[0,+∞)内单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是(  )
A.(-2,2)B.(-1,2)C.(2,+∞)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=$\frac{a}{x}$+lnx,其中a为实常数.
(1)讨论f(x)的单调性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案