精英家教网 > 高中数学 > 题目详情

(本小题满分12分)上海某玩具厂生产套世博吉祥物“海宝”所需成本费用为元,且,而每套“海宝”售出的价格为元,其中 
(1)问:该玩具厂生产多少套“海宝”时,使得每套所需成本费用最少?
(2)若生产出的“海宝”能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求的值.(利润 = 销售收入-成本)

(1)所需成本费用最少为25元(2)

解析试题分析:解:(1)每套“海宝”所需成本费用为:
= ……………4分
, 即x=100时,每套“海宝”所需成本费用最少为25元. …6分
(2)利润为:
=(                      ……………9分
由题意,             ……………………12分
考点:考查了函数的模型在实际中的运用。
点评:解决这类问题的关键是理解利润函数与成本和收入的关系式,同时要注意到函数的自编来那个的实际意义,得到定义域,结合函数 性质求解最值。属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某售报亭每天以每份0.4元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站.
(Ⅰ)若售报亭一天购进270份报纸,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式.
(Ⅱ)售报亭记录了100天报纸的日需求量(单位:份),整理得下表:

日需求量
240
250
260
270
280
290
300
 频数
10
20
16
16
15
13
10
以100天记录的需求量的频率作为各销售量发生的概率.
(1)若售报亭一天购进270份报纸,表示当天的利润(单位:元),求的数学期望;
(2)若售报亭计划每天应购进270份或280份报纸,你认为购进270份报纸好,还是购进280份报纸好? 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时8元,而其他与速度无关的费用是每小时128元.
(1)求轮船航行一小时的总费用与它的航行速度(公里/小时)的函数关系式;
(2)问此轮船以多大的速度航行时,能使每公里的总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)年中秋、国庆长假期间,由于国家实行座及以下小型车辆高速公路免费政策,导致在长假期间高速公路出现拥堵现象。长假过后,据有关数据显示,某高速收费路口从上午点到中午点,车辆通过该收费站的用时(分钟)与车辆到达该收费站的时刻之间的函数关系式可近似地用以下函数给出:
y=
求从上午点到中午点,通过该收费站用时最多的时刻。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数.
(Ⅰ)若,求取值范围;
(Ⅱ)求的最值,并给出最值时对应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为

(1)当时,求直路所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).
(1)写出的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某服装厂某年1月份、2月份、3月份分别生产某名牌衣服1万件、万件、万件,为了估测当年每个月的产量,以这三个月的产品数量为依据,用一个函数模型模拟该产品的月产量与月份的关系,模拟函数可选用函数(其中为常数)或二次函数。又已知当年4月份该产品的产量为万件,请问用以上哪个函数作为模拟函数较好,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)设函数的定义域为,
(Ⅰ)若,求的取值范围;
(Ⅱ)求的最大值与最小值,并求出最值时对应的的值.

查看答案和解析>>

同步练习册答案