精英家教网 > 高中数学 > 题目详情

(本小题满分12分)年中秋、国庆长假期间,由于国家实行座及以下小型车辆高速公路免费政策,导致在长假期间高速公路出现拥堵现象。长假过后,据有关数据显示,某高速收费路口从上午点到中午点,车辆通过该收费站的用时(分钟)与车辆到达该收费站的时刻之间的函数关系式可近似地用以下函数给出:
y=
求从上午点到中午点,通过该收费站用时最多的时刻。

上午点。

解析试题分析:当时,
得:
故:单调递增,在单调递减,
因此,
时,。当且仅当
即:。  因此单调递减,
所以,
时,,对称轴为
。   
综上所述:
故:通过收费站用时最多的时刻为上午点。
考点:函数最值的实际应用;分段函数的最值求法;利用导数研究函数的单调性和最值;二次函数的性质;基本不等式。
点评:本题考查的知识点是函数的最值,分段函数的最值,导数求函数的最值,基本不等式求最值,难度较大.对于分段函数的最值我们要分段求,把各段的最值的都求出,再进行比较,最大的那个就是这个分段函数的最大值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.
(1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

(注:市场售价和种植成本的单位:元/百千克,时间单位:天)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知二次函数,关于的不等式的解集为,其中为非零常数.设.
(1)求的值;
(2)R如何取值时,函数存在极值点,并求出极值点;
(3)若,且,求证:N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)某企业拟投资两个项目,预计投资项目万元可获得利润
万元;投资项目万元可获得利润万元.若该企业用40
万元来投资这两个项目,则分别投资多少万元能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD是矩形,弧CmD是半圆,凹槽的横截面的周长为4.已知凹槽的强度与横截面的面积成正比,比例系数为,设AB=2x,BC=y.

(1)写出y关于x函数表达式,并指出x的取值范围;
(2)求当x取何值时,凹槽的强度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
(本小题满分12分)某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.

(1)分别写出用表示和用表示的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)上海某玩具厂生产套世博吉祥物“海宝”所需成本费用为元,且,而每套“海宝”售出的价格为元,其中 
(1)问:该玩具厂生产多少套“海宝”时,使得每套所需成本费用最少?
(2)若生产出的“海宝”能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求的值.(利润 = 销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
, 求满足的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:
(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

同步练习册答案